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IMPACT BUCKLING OF THIN BARS IN THE ELASTIC RANGE
' ' HINGED AT RBOTE ENDS

By Carel EKoning and Josef Taud
SUNMARY

Following the development of the well~known differen~
tial egquations of the problem and their resolution for
failure in tension, the bending (transverse) oscillations
of an originally not quite straight bar hinged at both
ends and subjected to & constant longitudinal force (shock
load) are analyzed. To this end the course of the bar form
is expanded in a sinusoidal series, after which the inves-
tigation is carried through separately for the fundamental
oscillation and the (n—l)th higher oscillations.

The analysis of the fundamental oscillation dlgtin-
gulshes three cases: shock load lower, equal to, or higher
than the Eulerian load.,

The investigation of the (n-l)th higher oscillation
also digtinguishes between shock load smaller, equal to,
or greater than the (n-1)th stability limit, although on-
ly the first case is of practical significance.

Shock loads in buckling are divided into the period

of actual shock and the period of free oscillations follow-
ing the actual shock,

The investigation leads ‘to functions which are propor-
tional to the maximum stresses in time and space due to
the shoeck stresses in duckling. Theso functions are then
conmpared for the case of shoek load lower than Eulerian
load with the maximum stresses in static load. It is found

*#Stossartige Knickbeanspruchung schlanker Stgbe im elas-

tischen Bereich bei beiderseits gelenkiger Lagerung.”
Luftfah;tforschung. July 6, 1933, pps. 5H5~64.
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that the former are smaller for short shock periods and
vice versa; that 1is, in the extreme case, twice as high as
the latter. '

From a comparison of the functions decisive for the
maximum stresses, it appears that the Eulerian load may be
safely exceeded in shock-like buckling stresses, provided
the shock period is sufficiently short; further, that,
whereas the stresses under shock load above the FEuler load
show an nnrestricted increase with the shock period, the
stresses in shock loads below the Euler load reach an up-
per limit which is not exceeded during any shock period.

The report closes with an analysis of the interdepend-
enco between the shock stress in buckling and the shock
impulse J P dt. It is found that, contrary to common be-
lief, the stress with equal shock impulse is sensibly af-~
- fected by the shock period. " For that reason the determi-
nation of the stroess stipulates not only the time integral
J P dat, ©but also the shock force and the shock period =~
a fact.which is of essential importance from the experi-
mental point of view.

I. INTRODUCTION

The analysis of static buckling stresses affords, as
is known, a problem in stability. It poses and answers
the question up to what limit the compression may be in-
creased for given bar dimensions without exceeding the
range within wihich an unequivocally definable condition of
equilibrium exists. Several equilibrium conditions arse
possible after this boundary has been exceeded., On ap-
proaching the stability limit the rise of the deformation
is such that the bar usually loses its carrying capacity
before reaching the equilibrium condition, For this rea-
son, the determination of the stability limit is of de~
cigsive importance. .

Contrariwise, stressing a bar suddenly in dbuckling,
‘the suddenness being the short-time interval between load
change and loading period, as shown in this report, the
stability 1limit is no longer as significant as in the stat-
ic case, and may be safely exceeded, provided the shock
preriod is so short as to leave the bar no time to deform
as would correspound to the static equilibrium condition.
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From this it follows thét'the calculation of the def-

.ormations and stresses with respect to time 1s the primary

issue rather than the determination of the stability lim-
it when analyzing the shock load in buckling.

L g,
D kg,
= - P kgs
Y kg,
M kg m,
ag kg m™?,
a4, kg m~*,
m kg,
r m,
a,
A m,
€ m,
n m,
¢ m,

S=/ P dt kg s,

E kg m—2,
1 m,
i m,

" II. NOTATION~

force component parallel to bar axis (X).

force component at right angles to bar axis

(¥).
force component parallel to axis x.

force component at right angles to axis x.

bending moment.

outside force at right angles to bar axis
outside force parallel to bar axis.
momént loading of bar elements.

radius of curvature of the elastic line.
slope of the elastic line.

deviation of bar axis from stralght line in
unloaded condition. '

"amplitude" of bar axis in unloaded econdi-
tion. ’

deflection. (See fig. 2.)

shifting in direction bf X.

shock impulse. (See footnote, page 26.)
elasticity modulus. . ;
length of bar.

radius of gyration of'bar section.



J m*,

p - kg s® m*,
Ox kg m™ %,
€x;

t:” s,

T s,

T s,

b s”t,

v: “mg"?t,
Q.

&,

o,

:E,

Ao

A,B’G,D,kl ,kz,
Indices:
n=‘-l,2,3,
0

E,
L ee, etc,,

-, =, etc.,
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Sy

area of bar-section,

inertia moment of bar section.

. density.

normal stress in =x direction,

:elongation in x direction.

time interval..

period of oscillation of the free funda-
mental oscillation.

shock period. . .

frequency of oscillation.

velocity of sound in bar material.

phase lag.

ratio of shock load to Eulerian load.

ratio of shock period to oscillation period

of the free, transverse fundamental oscillae~
tion. .

"ratio of the maximum moments (taken abso-

lute) in the static and dynamic case.
proper values,

constants.

the naturael numerals. _

refers to guentities appearing with ten-
sion = O.

quantities representative of the Fulerian
buckling. load. .

dots over a symbol denote its 1lst, 24, etc.,
derivation in time rate. :

‘dashes over a symbol denote its lst, 24,

etc. derivation with respect to a length
(x). . .
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5??IIIa_TEE DIFFERENTIAL EQUATIONS OF THE SYSTEM

Within the curvilinear system of coordinates X ¥
the equllibrium equations for an element of the bent bar
of length ds are as follows (fig. 1):

' (L + %% ds) cos d¢-ﬁ(D + %% ds) sin dp-L+qy ds;o | (1)
(L + %% da) sin &+ (D + %% ds) cos dp-D+gqy ds=0 (2)

<M + %% ds) + <L + %% ds) ds sin %? +

+ (D + %g ds) ds cos %g - M - % q; 4s® sin %? +
+ % ag 4s® cos %? + mds =0 (3)
With r 4 ¢ = ds, whereby r = curvature radius,

these equations, upon dP-=»0 and disregarding the infi-
nitely small quantities of the 2d and 34 order and with

sin 49 ~ 4@
cos 49 ~ 1

reduce to

L-Lpsgq =0 (1a)
% L + g% +q3 =0 (Ra)
%%+D+m=o (3a)

The deviations of the bar axis from a straight line
in unstressed condition as well as the deflections in the
processes analyzed hereinafter, are assumed small compared
to the length of the bar, and the choice is a rectangular
system of coordinates x y such that in first approxima-
tion axis =x coincides with the axis of the bar in un-
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stressed attitude. .
components in the curvilinear system
components in the rectarngular systenm

or, since a

As a resuld:

X cos. +

and the
are

Xy
XY

Y sin

D ;'Q.X'éih @+ ¥ cos a

sin a = tan «
dg - L
dx T
%E = cdé
L =
.D=

ox

as ox

3D . _ 3X iy
3s = " ox V'
oM _ i

os ox *

X+ ¥

=y|,

t 3 "

Then the relations between the force

force

These terms are written into (la) to (3a), wherebdy,

omitting the small quantities of the 24 order,
librium equations for the slightly bent bar become:

By eliminating Y

aX , or _
ax T ax ¥ T =0

X oY -
7't St a=0
g% ~Xy'+ T +m=0

they

reduce to

the equi-

(1v)

(21)

(31v)
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E-uyrg=o - (4)
@.2...1_5. o om _
9x® Xy 9 ¥ d3x 0 (5)

Agsuming zero outside load at the bar element, i,e.,
q7 and q4 %o be mass forces of the bar element and m
the mass moment of the bar element 3 ¥y! are negligible
relative to gy, Decaunse, first, in sufficiently thin
bars the oscillation frequency and through it the mass ac-
celeration in transverse direction is small relative to
the corresponding quantities in the longitudinal direc~
tion; second, y' is a small quantity according to the
premises,

Thus the differential equations read:

’u _ X g% - g4 + fo. (5a)
Ox? d " ox

Now y 4is the deviation of the bar axis from straight

line in unstressed condition and m 1is the deflection, so
that y + m must be substituted for y in (5a) (fig. 2).

X and M are expressed in terms of deformation:

9¢
X=0, F=EF ¢ =EF 3=

M=EJ -g

oum

and the mass forces a3 and Q3> @end the mass moment m
as

ql':"'pFSga‘g
2
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Herewith (4a) and (5a) become:

748

) Sl S
Bae " Papp 7O (av)
v 2
m - __-L p 9.0 o N __ o :
B ok }*( 2\* T ovE =PI o ot ™ ° (50)
- ”hese two equatione (4b) and (5D) constitute the dif-

ferential equations of the buckling stress due to shock
of a*bar with'constant cross—~sectional dimensions.,

Iv,

SOLUTION FOR A BAR HINGED AT EITEER END

le The Free Longitudinal Oscillations of the Bar

We repeat the well—known formulas for the free longi-
tudinal oscillations of a straight bar.
by resolving (4b) conformably to the generalized equation:

They are obtained

£ = (& sin Ax + B cos Ax) (k; sin pot + ka cos pot)

The bar is assumed to be clamped or flxed at one exnd

but left free to move longitudinally at the other. Then
the boundary equations are: .
E=0 for == 0
08 _ X _ 4 u
B =0 Dbecause of the first boundary conditlion, thus
reducing the equation to
£ = sin Ax (k1 sin pyt + kz cos pyt).
Double differentiation according to x and ¢t affords:
E—_)—?-é- =. - }\.2 g
ox
.aa" T
e T

which, written in (4v) gives
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2 - - " - - -E. .
‘__—-A._E+'p°2p=0 _p°=)~./5'=v,)x.
whéré v = / %‘ is the velocity'of gsound in the material,
Furthermore, because of

g% = N cos MNx (ki sinp t + kp cos p t)

together with the second boundary equation we have:

Consequently, the frequencies are:

= T 31 ve., 2B = 1
Pon = 57 V» gy Vr eve- 217 TV
and the period is
T =§Jl=4l 4 1 R ____én.__l'.
on P v' 3 v’ T 2n - 1vw

2., The Free Transverse Oscillations of the Bar
Disregarding the rotatory inertia for the case of

X =0, equation (5b) becomes:

S 2
amn oan -
B S+t e P SE=0 | (6)

The generalized solut{on is:
n = g'sin (Pop & + ¥,) (Ay sin Ay x + By cos Ap x +
+ Cp sh Ay x + Dy ch A, x).

The insertion of

v

:_(75;
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The boundary conditions for the bar hinged at both
ends: read: ' o '

n=0)
# }for x=0 and x = 1,
Eraaid) |

thus modifying (6) to

n = E Ny = % A, sin (Pn t + 9,) sin A x (7a)
wheredby
A o= T 2T om
n l’ .L' L IR ] 1

By virtue of (7) the frequencies are:

_m2 [E5 éﬁ?/@l—. n®n® B _ 2fr
Pon = gy T g T v

where 1 = radius of inertia of the cross-sectional area.,
As a result the oscillation period of the (n-1)th higher
oscillation is:

2m 2l

Pon n® v i

Ton

The ratio of oscillation period of the transverse and
longitudinal oscillations for the fundamental harmonic
(n = 1) 4in the bar hinged at both ends to that of the bar
left free to shift longitudlinally at one end, is:

1l
For slenderness ratios 1 > 27 the transverse oscillations
are consequently of lower frequency than the longitudinal
oscillations.

%. Transverse Oscillations Due to Constant Shock Load

Here we analyze the specific case of a bar hlnged at
both ends being stressed under constant shock load X dur-
ing a shock period T, We idealize the case by disregarding
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the longitudinal oscillation, i.e., assume the tension

(normal force) to be identical at every point of the bar

.. during the period of shoclzs With the neglected roﬁatory

. inertia the resolvable partlal differential equation 1s,
according to (5b):

Fn L Fn ., T 37 |
EJa;r—xa—g'l'pFa—z-”xax —0. (8)

The deviations of the bar axis from & straight line,
i,es, the original bar form, are expanded in Fourier se—
ries conformadly to the local function sin Anx of (7a):

¥y =2 & sin Ay x = € sin A x + €2 sin 2N x4 L.l

+ €, sin n M x + (9)

where A\ = % is the first proper wvalue of the free trans~

verse oscillation (see section IV,2) and €n = constant.
Equation (8) resolves to

n= % Mtn Mxn = Mtz 810 Ay x + myp sin Ay x + o00s +
+ Mgn sin A x ...
= Mgy sin L X+ Mgz sin 2 A x + ... F
S N T S

where ng = £(t)

'nx = CP(X) .

Putting these values of y and m in (8) gives

4
EJA ZI‘.ln‘]' ntnsinnkx+X?\.2 %nz Mgy 8in 2 A x +

dz
+ p F % —:ﬁin sin n M x + X N° g-na €p sin a A x = 0.
7

The equation for the fundamental equation is:

EJ A my, + XN 'nt1+pF——a-%§-]=-+X>\.2 e =0 (10)
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and;ioiw%he {n<1)%th highes- dbscillation:
T ="-:',...2;- Y aé'r\ " :
n* BF X -fiptn® XN ngptef 5€;}¥ +n2 X ¥ €,%0 (11)

riod. After the shqgk thre bar executes freec oscillations
whose initial conditions are contingent upon the deflec-
tipn_and_rate at the_termination of the shock.

'a) The' fundamental osclllatlonf - . C

. The uulerian buckling load for the bar hlnged at both
ends and subjected to stat;c load (see also V) is:

- T o _ N\
Pp=EBJ iz =EJ A (12)
) Bv denotlng tnb zatlo of shock force to Euler1an 1oad
with a, or in other words, presume
. X
Toae e, T _ a = = == . . (13
e | L (13)

X==a%JN and (10) becomes
a ' o : 4
o T _agg +EBIN (1-a)m =acEJN (14)

index 1 being omitted for simplicity.

The resolution of this equation nust ‘differentiate
between three cases:

ln X g PE, t].lat i_.s,__ a'< 1
2. X = - PE' " " ) a = 1

3. X<=-Pg, " ", a>1

@) Shock load lower than the Eulerian load¥*

(a < 1).

*This also includes all casds with negative 'a, that is,
the cases of shock stresses in tension.



NsA.C.A,. Tochnical Memorandum Ng. 748 13

_ Putting my = A, + ﬂt in (14), whero ﬂt denotes the
resolution of the homobeneous equation and ﬂt the effect
of the disturbing function, the resolution of the homogene~

ous eguation 2

p F —Ltisrg X (1 - a) fy =0

'giﬁes Mg = k1 sin p t + kp cos p ¢,

4
because E% A (L - a) >0. Consequently,

P2

The insertion of these values in the homogeneous equa-
tion gives the freguency:

p = x M/F— JI =~ a= pow/z_:ﬁ;_ (15)

where p, = freguency of the free fundamental oscillation
(see IV,2).

The effect of the distﬁrbing function on the right-
hand side of (14) is found from

EJN (L-a)fy=ackdJ N
at
i e

Consequently,

s
Mg = &y sin p ¢ + k3 cos p t + 77 ¢ (16)

whence,
Mg = P (k3 cos p t - k sin p t)  ~  ° (17)

Assuming m¢ = 0 and “t = 0 for the start of the
shock, t = 0, (16) and (17) give
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“fhe solution is:

Ng = .i..._g'._-—- €(1 - CO8s P t) : (18>
and consequently,

ng = I_%_; €psinpt (19)

Let T = shock period. Then at the end of the shock:

My = f—%—; € (L - cospT) : (20)
ﬁT = I—%—; €p sinp T (21)

The incipient free oscillations following the end of
‘the shock are, according to (6):

M=Mg Mg = C sin (py t + @) sin A x (22)

with © = hasé shifting. For this period of the processes,
(20) and (21) are the initial equations. Thus,

C sin (py, T + @) = -5 € (1 -~ cos p T)

C py cos (py, T + @) = I—?—; ¢ p sinp T.

The addition of the squares of these equations gives:

2 a? 5 2 P®
2 = -€® [(1 = cos p T) + —5 sin® p 7]
(1 -~ a) Po
or, with due regard to (15),
C=+2— ¢ /2 ~2cospT~-a sin® p T.

l =g

We use the oscillation period of the free oscillatlon

T = %E as time scale and introduce
o)

T=1p07 =20y,
Po
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so that P T =217 b1 - a, and

0 = —2— ¢./2-2 cos(2 m b/ 1-2) - a sif (2 1 by 1ma).

- .a

Our interest centers about the maximum bending moment

‘which is proportional to the maximum curvature (3 n/3x®).

Formula (22) concedes

& ; - G N sin (p, t + @) sin A =,
ox? ° :

The curvature is maximum in the center of the bar
(x = %) and amounts to
2 2 2
max %—2 = }\,2 = 1-15- = € TT—E- £ (a.,'b)
x 1 1

where

f(a,b) = T%;./g—z cos(2mb J/1-a)~a sin? (21b J/1=2) - (23)

This value is decisive for the maximum moment after
the actual shock period, However, it may happen that a
Such is tho case when the shock lasts at least long cnough -~
until the highest possible deflection has been reached once.,
According to (18), the greatest possible deflection during
the shock occurs once when cos pt = -1, Consequently, if

il 1

ro= Lo T =

Vit

0
T - 1 1

b

Vi

PT /T-a 2/1-a

the maximum moment is already reached during the shock,

On the other hand, according to (18),

M= ——¢€(l-cospt) sinAx

a

1
during the shock, hence
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TN, 2 @ L™ e
max axa -—- 2 1 - a €‘ 7\' -'.". €_"12 f(a'b) '

is approximately proportional to the maximum moment, whereby

£(a,b) = 2 ———m (24)
- l - a
To sum up: For shock périods b < ““l———ﬁ, formula (23)
2,/ 1 - a
— 1
is valid; for shock periods b T ——r===—— (24) is the de~
’ 2./1 - a L
cigive quantity for the maximum moment. For b = ——7===—=

. 2,/ 1 - a
(23) steadily resolves to (24). The latter represents an

absolute mazimum value of f£(a,b), which may not be ex-
ceedod with any shock period,

B) The shock load segquals the Eulerian load (a = 1)
In this case (14) reduces to
g | BT e
at®>  pF
Integrating twice gives:
ng = g%;-kf € t° + kit + ka.
The initial conditions;
nmg = 0 and ﬁt =0 for t =20
concede | k, =0 and Xk = 0. Therefore,
ny = 5’22% e t? (25)
and for the end of the shock,
ng = _EJ N ¢ 2 (26)
2pF
and .

Ry = 2L AT e (27)
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The time interval after the actual shock is again com-
puted with (22) and the initial conditions for this shock
period are posed in (26) and (27), Thus,

.
O osim (pg T+ @) = TN €7
&
C pg cos (pg T + @) = f% Noer

hence,

or, when taking

— 2m EJ »* _
T=4¢07p and £ AN =
Po pF Po

into consideration,

c=2ﬂchn2b2+1.

Equation (22) again yields

Fn_ a2 L TR
max -8;5 = 0 N = ¢ 1'5' f(asb):
where
fla,d) = 2 17 b/ 12 b2 + 1 (28)

Contrary to the case of a < 1, eqguation (25), appli-
cable during the shock, is now aperiodic, hence the deflec~
tion during the shock may not exceed that at the end of the
shock, But the latter is, conformable to (28), the start
of the free oscillation.

¥) The shock force exceeds the Eulerian load (a > 1)

In this case,

B A* (1 - a) <O,
oF

and the solution of the homogeneous equation corresponding
to (14), manifests: -
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" fp = ky sh pt + ks chop %,

whence,

dzﬁ£
— = 2 A,
at PT Mt

which, written in the homogeneous equation; gives

2 . B ) - - 2 - '
P =5 M (a=1) =p,2 (a - 1) (29)
Po = frequency of the free fundamental oscillation.

EJN (L-a)fiy=actJN

concedes the particular integral ;t at

= - - __E_ .
Mt T T o1 ¢
Consequently,
. a oy
mt =k, sh pt + %k chpt -7 € (30)
ﬁt =p (k; chpt + k, shpt) o (31)

Assume my = 0 and My = 0 for t = 0, Then (30) -
and (31) give :

ks = Y € and ky =0

whence, h
ng = E~%"T ¢ (chpt - 1)  (32)
. a
Ny = 72T € pshp tea,

and for the end of the shock 4 = T:

S Nt
hp=glperehpT (34)
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.- . .. For the free oscillations after the shock (22) and
the initial conditions (33) and (34) are again’ applicable.
Thenn ]
N gin (pe T + @) = ;—éff € (ch pPT- 1)
irgi T opo cos (po T+ Q) = ;“?‘I €pshpT

and, with due allowance for (29)

G=;_§._Tefg-2chp--'"r+ash2.PT
or with P
pT:ZTT'b""':B..TTb "1
Po
¢ = ;_——~ € J[B-Z ch(zﬂba/a- 1) + a sh® (2mb V/ a - 1)

Aceording to (22) the maximum curvature is again
2 2
max -gx-—g- =cX = ¢ 1{-2- f(a,b) .

where

£(a,b) = =y J 2-2 ch(zmba/ac1) +a sh®(2mby/a-1) (35)

Since (32), applicable during the shock, is aperiodic
for m¢ and increases with t, no greater deflection can
‘occur during the shock than the maximum deflection reached

b) The (n~1l)th higher oscillation

2
Substituting X = -~ a B J A, equation (11) becomes:
* ' 4 ol 4.5

p ¥ _;:tn +2° BTN (2°-2) ngn =10 2 EJT N € (36)

Agein we differentiate between:
1, a < n®
2. & = 1n®

3. & > n®
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of which the first is of primary interest. Even wlth the
first higher oscillation (mn = 2), cases 2 and 3 refer to
shock loads at least 2° = 4 times as high as the Eulerian
load. Such excesses of the Eulerian load may be disregard-
ed and the analysis confined to a < n<,

The resolution of (36) for a < n® is similar to that
of (14) for a < 1, Let the solution of the homogeneous
ecuation dvs

Mgp = K1 sin py b+ ko cos p, &

so that . a

& | _

which gives the frequency

Pn = 1 N gl V1u® - a=1np,us/o® - a (37)

F

p,, = freguency of free fundamental oscillation. (see
section IV,2.)

The effect of the disturbding function follows from
= 4
12 EJ N (n® - a) mgp =0 a EJT N ey

at

whence the solution of (8) at
a

= ky sin t + ko cos t + 55— €
Ntn 1 b 2 P 2 - g B

k, and kg are again defined from the initial conditions:

Mg = 0 ard mng, =0 for 't = 0. The result is

Mgy = ——— €n (1 = cos py t) (38)

na

n = —=——— p. €. s8in p.t = D €n sin p,t
tn 12 - a n n | n r;g*:—;- 01 n
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) . - . l n a . .
) : Ntn = 7_;._—-2_-_—?-:_:_; Poxr €n sin pn T . o : (40)

After the shock the bar executes the (n~1)th fres
higher oscillation, which 1is governed by

Mn = Cp 8in (0% pgy t + @) sin n A x (41)

With ¢ and @ defined from (39) and (40) as initial con-
ditions:

Cp sin (n® poy T + @) = —— €, (L - cos pp T)
n - 8

n a
Cp 1® Doy cos(n® pe; T+ @p) = ;F§§=f=: Poy €n sin pu 7T

a
Cp = 5 €5 v/2 - 2 cos pp T ~ p2 Sin Pp 7.

Because of (37) it is

Pn T =2 nmhb Jrna - a

when T = 2m b. PTherefore,

Poa

- a
Cp = —§L— €n M/W;~2 cos(2nmb+/ n®~a)~ = sin®(2amb+/ n%=-a).

According to (41) the curvature is

2
8'22 = - 0p 2 X sin (0% poy ¢ + @) sin n A x

Q]

and the maximum curvature,
2

3 | L
max 5—2% = Cn n= )\,2 = i-z- €n f(n,a,b),
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where f{n,a,b) =

2 —— a r
=22 /2—2 cos(znﬂang—a) -~ — sin® (2amb W/ n®-a) (42)
n°=a n

The validity of (42) for the maximum moment is decis-—
ive only when it occurs after the shock. If the actual
shock lasts at least long enough to permit once the occur-
rence 0f the hlighest possible deflection, then the maximun .
moment occurs during the actual shock, This is the case
according to (38) when <cos py, t = - 1, that is, when the

duration of the shock is

T>—IT—-— 1 1
pn npol '\/ne-a
or
b 2 =

In this case the curvature is
2
d Mp & 2 52
B = g % (1 - co t i A
522~ F o a € n ( cos pn t) sin n A x

according to
a

Mn = 75—~ €(1 - cos pp t) sin n A x
n® - g

and the maximum curvature isg
2

2'm 2a 2 e
mnax .é._;% = F-—:_; €n n2 >\, = €n {2—- f(n,a.,b),
with
2 a n®
f(n,a,d) = RN (43)
n- - a

Summed upt for shock period
1

2 n/n® - a

equation (42) is applicable;

b <
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1
2 n~/n2 - a

v

b

(43) is valid as the quantity deciding the maximum moment,.

1 .
When b = - , (42) vecomes (43). The lat-
2 nd/n® - a
ter represents the maximum value of f(n,a,b), which is

not exceeded in any shock period,
V. NUMERICAL INTERPRETATION AND DELUCTIONS
The behavior of the bar during shock load is best eval-

vwated by comparing it with 1ts behavior under static load.

The differential equation of the static load is:

2
d

BEJ &N - Xm=X 44
i M Y (44)

p-%

with y given from (9). Limited to the first term of (9),
the resolution gives:

m= 20, sin A x + 0z cos A x
or - m = C sin A x (45)
since m = 0 when x = 0.

Putting (45) in (44) gives A\ = % and

€
Cl = 12 ’
EJ nv _ 1
———
X1
consequently,
o €, sin A x
M= s | (46)
5
X1
— _ T2
for - X = PE = B J 12’
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N s - .

that is, the Eulerian load, m = «. Therefore, and with
consideration of (13), ' ' g

a

= em— € in A x
n 1 - 1 8in
tﬁ;he;n-ce. ' d_an TT2
. mex oz .= 7T €1 f(a) (a7)
- PR a .
with “fla) = T

The ratio ¢ of the moments due to shock load and
static load ' is:

c = V/Z - 2 cos(2mb /1 - aT - a sin®(2nb /1 -~ a) (48)

.acecording to (23) and (47) when a < 1 and the duration of
the shock is

and c =2 (49)

‘according to (24) and (47) when the shock period is
1

e 4 e e e

b
2/ 1 - a

Iy

It is readily seen that the ¢ terms are dependent on
the magnitude of the eccentricity e¢. (8ee fig. 3.)

It will be noted that the ratio ¢ of the dynamic and
static stress for short shock periods 1s smaller, at longer
periods greater than 1 and its maximum value 2, Moreover,
for egqual shock durations, ratio ¢ 1is smaller as the
shock load is higher.

When plotting, as in figure 4, that shock load b
against shock load a for which the dynamic equals the
static stress, it is seen that comparatively long shocks
‘are necessary vicinal to the Eulerian load to raise the dy-
namic stress on a level with the static stress. With a
shock equivalent %o 0,97 times (approxzimately) the Euler-
ian load, this shock period equals the natural oscillation
period .of the frce dar.
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If- the form of the bar- 41s--such as to exactly produce

the (nnl)th hizher harmonic, by the same argument the nth

stabllity 1limit is

- X =EJ %%1

‘ihan the bar produces only the fundamental oscillation and

the decislve function for the maximum moment is

f(a,n) = —Eihé— . ' (50)

When

s —
2 n./n2® - a

the comparison with (42) and (43) gives
='~/'2~a-cos(2nﬁb~/n2-a) - f% sin® (2amb+/ n°-a) (51)

and c =2

when

The range of validity of (51) is limited to very short
shock periods., . Even for = =2 and a = 1, the upper lim-

~it -0f b 1s 0.144 only. Since for very short shock peri-
- ods the premises. of the calculationg are in any case hard-
.1y met (reference 1), the evaluation of (51) may be fore-

gone, especlally since the cage where exactly only the
(n-1)th higher oscillation occurs, 1is pract1ca11y without
significance, .

By contrast, the case where the bar shape is such as

to incur several oscillations concurrently, is much more

important. But obviously this case does not lend itself -
to general treatment, because the results are substantial-
ly affected by the relative magnitude and the s1gn of €y

;in (9).

_' The resolution of (44) is applicable only to the cases
for the evaluation of the data of the dynamic investiga-
tion in which the load lies below the stadbility limit, i.e.,
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for n=1 in the a < 1 range; for n =2 in the a < 4
range, etc. For loads above the stability. limit (44) should
be disregarded in fgvor of the more exact .equatidn of the
-elastic line, the resolution of which is, however, quite
complicated, For that reason the comparison of the data

is limited to n =1 for a< 1, a=1, and a > 1, re-
spectively. The results are illustrated in figure 5, in.
logarithmic scale. The functions f(a,b) from (23), (24),
(28), and (35), proportional to the maximum moments are
plotted for divers a against Db,

It is readily seen that the Eulerian load may be ex~
ceeded in buckling stresses due to shock, provided the
shock poeriod itself is short enough, Moreover, the maxi-
mum dynamic stresses are fostered by increasing shock load
a and period bD. But, while attaining a limit value for
shock loads below the Eulerian load (a < 1) for a given
duration of shock, which cannot be exceeded in any shock
period, they increaseo arbitrarily at shock loads above the
Eulerian load. '

VI, EFFECT OF SHOCK IMPULSE J P dt OF THE STRESS

Frequently it is assumed that the stress due to shock
load F is dependent only on the shock impulse; [ P at,
that is, individually unaffected by the magnztude of the
shock load and the duratlon. .

The results of the present paper disclose the error:
of this"assumption, for otherwise only the product a b
would appear as sole variable of the terms for f(a,b).
Again, it may be asked whether or not it would be approxi-
mately correct. For that reason, we compute the functions
f(a,b) versus b- for several values of S = [P dt = ab.

*It is couﬂou prectlce to designate the time integral

J P dt as "shock load," whereas the quantity P 1is not
specifically expressed. This practice is probably due to
the concept that only the ‘time.integ ral -/ P at "is decis-
ive for the shock ‘process, whereas no special importance
attaches to gquantity P. But the authors of this paper
have, on the strength of thoir investigations, drawn 4if-
ferent conclusions, and believe it, in fact, to be more
logical to express P, which has the dimension of a forcs,
as "shoeck load" and time iantegral [ P 4t with the dimen-
sion of a force times time interval as "shock impulse."
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o ,Coﬁgquyatiggspn the fundamental oscillation, there
' dreé three ranges of b for a stated value of S = ab:
"1, range O < b< b; for a > 1.
2, b, <« b< by for a <l to the
- extent that the maximum stress occurs

after the actual shock period.

3s range by < b when the stress occurs
" during the actual shock period.

‘The values for b, and Db, may be defined as fol-
lows: '

a =1 for b, consequently, b; = S;
bg = —'—'""}""’—— for .bag
241 - a
or
by = %— (s +4/ 8% + 1)
because
_ 8
a = _beo

For f(a,b):

equation (35) is valid in the range of 0 < b < b

1" (23) ] 1" " " . fl i bl < o) < 'bz
i (24) " " " " " ”u 'bé <. ' o
1 (28) 1] 1 i it 1 [ b = 'b-l
The value of f(a,b) for b =0 1is obtained by put-
ting a = % in (35) and permitting b to apprpach:zero.

Then,

1im f(a,'b)=/§- sh> (2w /8 Db~ b2) =
=0 b

(S - 2b) sh (4m V/S3b:' 1'?’2'):: 2 n.s.

T Vsvew

=1 S



28 H.A.C.A. Technical Memorandum No., 748

Y

With these formulas we computed f(a,d) for § = 0.25;
0650, 0475, 1400, and 1,25, as well as for various b wval-
ues.s . The results are plotted in figure 6. -The ordinates
of the individual curves ‘are noticeably not approximately
constant with the parameter S or, in other words, the
stress due to a shock load cannot even be approximately
given in function of the shock impulse. On the contrary,
shock load and shock period must be individually known
if the ‘shock stross is to be dotormined.

This result is of great importance for shock tests.
Shock load and shock period must be included in such ex~
periments, although this will b6 more difficult to accom-
plish than recording the shock impulso,

APPENDIX
Effect of Minor Cbanges of the Original Bar Shape

on the Results

The premlse of the interpretation of the results was
the selection of the original bar shape such as to precise=~
ly insure the occurrence of the fundamental oscillation
due to shoeck load. In the example hereinafter, we attempt
to show the effect of a minor changoe in the original shape
of the bar on the results. For simplicity the range is re-
stricted to a <« 1, that is, to the range within which the
ratio ¢ of the dynamic and static stress is readily odb-
tainable,

Ve assume the shape of the bar such as to develop
aside from the fundamental oscillation, yet the second
higher oscillation, Then (9) reads:

Yy = €1 sin % x + €3 sin 2 % x
with == A,
A
. For shock periods,
' 1l
b i T
2 J”“_ a
the equation

nv
[
(=

.21’.n3 - a 69 - a
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is particularly applicable, According to IV,3a and IV,3D
the.maximum deflections -occur during the shock, The cur-
vature of the elastic line is expressed by

éa_'u
ax

a R [ iffl; (2 --éds ﬁ'ﬁ) sin A x +

9 €4 ‘ |
+ 5o (1 -.cos Ps t) gin 3 A - ]‘ (52)

The points of the maximum and minimum values of this
function result from the resolution of

3°n .3 € x S
{9'n € _
323 ia A [:1 oy ‘1 cos p t) cos A x +

27 €4

+ §f:‘" (1 - cos p3 t) cos B A x }l = 0 (53)

With |

cos 3 A x= 4 cos® ANx = 3 cos A x
(53) resolves to cos Ax =0 E (54a)
and ”

€

27 €
I~L (1~cos pt) + —5—41 (1~cos pat)(4 cos®A x=-3)=0 (54Db)

.~ TFirst we consider the maximum for x = % of (54a).
Here (52) gives: '

3% 5 € 9 €
542 a A [:f—; (l-cos pt) - g:fi (1~cos Pst)}' (85)
9 €3 .
To the extent that -|eal | ¢1,| hence 9 - al =
€
|I_i;; , the limits of the maxlmum curvature are
€ 2 €
e 32 ( _ 9 3> a;g S lea N L (562a)
l-a, 9 - a ox*® mnax 1-a

=3

wvhen €; and €3 have the same sign, and
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&2 9¢
22N (-—i-- =2

l=a  9=a

o nl’

——

ox°

- €3
P
2a Ima

= (56D)

max

=L
2
when :€1 and €3 have different signrs.

: - Comparing these results with the value of the curva-
ture at x = 1/2 1in the static case

l &n
dx?

a xa(. 9 .2 Q3>
l - a 9 « g

the ratio c¢ of the dynamic and static stress is found to
lie between

xk

61 (9 hay a)
2% o= : -
c= 2l (9 -a) -9 (1 - (57a)
when €; and €3 have the same sign, and
€,(9 ~ a) |
Scoz (57D)
€1(9 - a.) - 9 €3(1 - a) -

when they have a different sign.

This leavés the guestion, whether or not at some

2
point other than =x = L oan upper limit of §~2 may
_ 2 O0x” | max

occur which exceedsg the values given in (57a) and (57b).

Superior limit values of §—2 may occur at

= _ 0x° |max
points other than x = % only when x meets equation
(54b). Let x;, be a real root of this eguation., Then
3 1 9-a€ 1~ cospt

2 A = = 1
°08" M F1 T Z T 108 T 7a €5 1= cos pyt

hence, ‘
sin 3 M x;, = sin A x,(=1+4 cos® N x,) =-

sin M x,(2 - & 272 Sa 17008 R b
27 l~a €3 l-cos p t

Then, according to (52) the curvature at x = x; is:
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»(595)

748
éz—'g- =|a A\ sin}»xl[g--i-—e—l—- (1 - cos p &) +
: ox x=x3 e a
18 €4
+ 5—:—— (1 - cos psti]|
The upper limits of (58) are:
) 2 € 18 €
g-e—;l S|2a N sinkx1(§1_1a+9_3a>
X |x=x
when '€; and €3 show the same sign, and
2
2
QJQ él % N la & gin A x,
X=X3 e
when otherwiss.
The requirement that the curvature at x = %, for
equal signs €, and €g

shall at the most be the same

as the maximum value of (56a) results in

18 €3 < 2 €1
2 X sin A ( + ) = '2 N,
a sin Xy Z 1o . 5= . a 1",
This=dondition is always met:
' 2 €, N 18 €53 | « I €,
3l-a 9=-a] |1~-a
i.es,; for c 1
' 3| <
BlsE = (60
€, 6 )
because
i-a<l
9 - a8 9

For different signs of €; and €3
similar, according to (56b) and (59b):
_}\a a€1

9 €g
271 gin N\ x | '2 > ( - )
3 1 -a® 2 1 =& 9-a

the result is

This condition is met for every value of

€5 as can
readily be seen.

(58)

(59b)
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Lastly, it may happen with equal signs of €, and €3

2
that the maximum value of %—5 is higher at x = x,,
x
in the static case than at x = %. This case which, as
. _ €3> 1 .
is readily proved, obtcurs for T | = 5 simply results

in a lowered upper limit of (57a).

Summed up, it may be stated that, so far as

, %the investigation may be limited to the point

o
e 1A

For the case of fundamental oscillation during the
shock period, we had ¢ = 2, according to (49)., The high~
est possible percentage deviation from the figure 1is, ac~
cording to (57),

(2 €
9 22 (1 - a) 'e"%
. 100 = =— 100
- 3
(9 - a) =9 g2 (1~ a) 1= g5

It is seen thaé this maximum percentage deviation of
¢ from e = 2 Jdecreases as the shock load (a) increases.
The deviation is highest for vanishing shock load, that is,

€
it is slightly greater tham the quantity €% 100. The

closer the shoclz load approaches the Euler load, the less
the effect of the course of the original eccentricities
on the results. With equal sign of €; and €3 the val-
ues ¢ = 2 arc excecded; with unlike signs they fall be-
low ¢ = 2,

REFERENCE

l, Taub, Josef: Impact Buckling of Thin Bars in tho Elas-~
tic Range for Any End Conditione T.M. Wo. 749,
N.A.C.JA., 1934,

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.



N.A C.A. Technical Memorandum No. 748 - Figs. 1,2

<z
v/
5

Pigure 1.~ Torces and moments on element of bar,

Tigure 2.,— The orizinally not ocaite straight bar hinged at
both ends under noraal loading X.
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FPigure 3.~Ratio c of maxinum moments under dynamic and

static load versus ratio b of shock period
to period of free oscillations for various ratios a of
longitudinal force to Eulerian load.
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Pigure 4.-"Shock period" b for divers "shock loads" a,
for which the maximum dynamic and static
stress are equal, l.e. c =1 .
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